Preaxial polydactyly caused by Gli3 haploinsufficiency is rescued by Zic3 loss of function in mice.

نویسندگان

  • Malgorzata E Quinn
  • Allison Haaning
  • Stephanie M Ware
چکیده

Limb anomalies are important birth defects that are incompletely understood genetically and mechanistically. GLI3, a mediator of hedgehog signaling, is a genetic cause of limb malformations including pre- and postaxial polydactyly, Pallister-Hall syndrome and Greig cephalopolysyndactyly. A closely related Gli (glioma-associated oncogene homolog)-superfamily member, ZIC3, causes X-linked heterotaxy syndrome in humans but has not been investigated in limb development. During limb development, post-translational processing of Gli3 from activator to repressor antagonizes and posteriorly restricts Sonic hedgehog (Shh). We demonstrate that Zic3 and Gli3 expression overlap in developing limbs and that Zic3 converts Gli3 from repressor to activator in vitro. In Gli3 mutant mice, Zic3 loss of function abrogates ectopic Shh expression in anterior limb buds, limits overexpression in the zone of polarizing activity and normalizes aberrant Gli3 repressor/Gli3 activator ratios observed in Gli3+/- embryos. Zic3 null;Gli3+/- neonates show rescue of the polydactylous phenotype seen in Gli3+/- animals. These studies identify a previously unrecognized role for Zic3 in regulating limb digit number via its modifying effect on Gli3 and Shh expression levels. Together, these results indicate that two Gli superfamily members that cause disparate human congenital malformation syndromes interact genetically and demonstrate the importance of Zic3 in regulating Shh pathway in developing limbs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel frameshift mutation of the GLI3 gene in a family with broad thumbs with/without big toes, postaxial polydactyly and variable syndactyly of the hands/feet.

To the Editor : Mutations of the GLI3 gene lead to a wide variety of phenotypes such as Greig cephalopolysyndactyly (GCPS), Pallister–Hall syndrome (PHS), postaxial polydactyly (PAP) types A/B, and preaxial polysyndactyly (PPD) type IV (1–7). The main clinical features of these phenotypes are summarized in Table 1. The GLI3 protein may be divided into three parts (Fig. 1). The part towards the ...

متن کامل

Reciprocal mouse and human limb phenotypes caused by gain- and loss-of-function mutations affecting Lmbr1.

The major locus for dominant preaxial polydactyly in humans has been mapped to 7q36. In mice the dominant Hemimelic extra toes (Hx) and Hammertoe (Hm) mutations map to a homologous chromosomal region and cause similar limb defects. The Lmbr1 gene is entirely within the small critical intervals recently defined for both the mouse and human mutations and is misexpressed at the exact time that the...

متن کامل

T-box3 is a ciliary protein and regulates stability of the Gli3 transcription factor to control digit number.

Crucial roles for T-box3 in development are evident by severe limb malformations and other birth defects caused by T-box3 mutations in humans. Mechanisms whereby T-box3 regulates limb development are poorly understood. We discovered requirements for T-box at multiple stages of mouse limb development and distinct molecular functions in different tissue compartments. Early loss of T-box3 disrupts...

متن کامل

Gata6-Dependent GLI3 Repressor Function is Essential in Anterior Limb Progenitor Cells for Proper Limb Development

Gli3 is a major regulator of Hedgehog signaling during limb development. In the anterior mesenchyme, GLI3 is proteolytically processed into GLI3R, a truncated repressor form that inhibits Hedgehog signaling. Although numerous studies have identified mechanisms that regulate Gli3 function in vitro, it is not completely understood how Gli3 function is regulated in vivo. In this study, we show a n...

متن کامل

Loss-of-Function of Gli3 in Mice Causes Abnormal Frontal Bone Morphology and Premature Synostosis of the Interfrontal Suture

Greig cephalopolysyndactyly syndrome (GCPS) is an autosomal dominant disorder with polydactyly and syndactyly of the limbs and a broad spectrum of craniofacial abnormalities. Craniosynostosis of the metopic suture (interfrontal suture in mice) is an important but rare feature associated with GCPS. GCPS is caused by mutations in the transcription factor GLI3, which regulates Hedgehog signaling. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Human molecular genetics

دوره 21 8  شماره 

صفحات  -

تاریخ انتشار 2012